FINAL REPORT

Contract No. N66001-94-C-7004
Contract Line Item Nos. 0001, 0002

Sponsored by

Naval Command, Control, and Ocean Surveillance Center
San Diego, California

Linda® for Networks of Shared Memory Multiprocessors

Prepared by
Scientific Computing Associates, Inc.

One Century Tower
265 Church Street

New Haven, CT 06510-7010

Dr. Andrew H. Sherman, Principal Investigator
Telephone: (203) 777-7442
Email: sherman@sca.com
Report Date: January 26, 1996
Period Covered: December 28, 1993 — December 28, 1995

UNCLASSIFIED
Approved for public release; distribution is unlimited.

20050322 138

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

Table of Contents

1. PROJECT SUMMARY ...cceeiciiieneenssesessesssesssssssssssssssssssssssssssssssassssssssssssssssssssssssnsnarssssssscsssstsssses 1

2. PROPOSED PHASE Il RESEARCHcccecevvemiermmmemesessessicsessessssarsosassssesssssssssassssssssssanaanasassssassss 3
2.1 RESEARCH OBJECTIVES
2.2 RESEARCH PLAN

3. BACKGROUND TECHNOLOGIES.....ccovtsseserereeriesssessrresssssrnarsrssssssrassnsanarossassrassssssssssssssssssssses 5
3.1 KHOROS 5
3.2 VIRTUAL SHARED OBJECT MEMORIES 6
3.3 PARADISE 7
3.4 PIRANHA 9
4. PHASE II RESEARCH RESULTS....cuceevirieneerrrerssrsorsssssssnestosassonseestssentsastossssssssssassssssssssssasess 1
4.1 EVALUATION OF VISUAL PROGRAMMING ENVIRONMENTS .11
4.2 CONSTRUCTING THE PROTOTYPE TVPS 13

4.2.1 The Tuple Transport 14

4.2.2 Piranha Scheduling. 14
5. COMMERCIALIZATION....crceressrsnsseersseccessssssssssssrsssassssensssssssssssssssssssssansrnsassassasasastsnsaassasasss 17
6. CONCLUSIONS .ccvvveervrerseererssssssesossrsessssessessassssssssssssssstsssnsssssssssssssttrsssssssnsassssssssassasssossassoreses 21
7. REFERENCES uuveeettrtreresssessrssnnsnsasasstssssssssssssssssssassstssesessssssssarssrsssssssssssstasssasssssssssssssssessasassoss 23
APPENDIX A: PIRANHA DOCUMENTATIONcoovicnnteeeeeerirensestosssossssssssssssssssanasnnsssssassssssssnssese 25

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

1. Project Summary

In this project we developed a prototype visual programming system (called the Trellis Visual
Programming System, or TVPS) capable of transparently supporting parallel and distributed
computation on the Convex Exemplar and surrounding workstations attached on a local area
network. We achieved this goal by combining Khoros® [9, 11] (a product of Khoral Research,
Inc.) and Paradise™ [16] (a virtual shared object memory product of Scientific Computing
Associates, Inc.). The TVPS has the following major features:

e It provides a two dimensional visual programming language interface (i.e., the Cantata
portion of Khoros [18]) in which boxes (called “glyphs”) are used as graphical
representations for entire programs, and output-to-input data flows are depicted using lines

between glyphs.

e It automatically and dynamically assigns computations corresponding to Khoros glyphs to
available processors at run time in order to exploit available computing resources and
thereby minimize the time to completion. Heterogeneous collections of processors are fully

supported.

e It allows the use of parallel implementations for individual glyph computations, and it
provides underlying infrastructure for interprocess communication within such parallel
glyphs. It does not, however, provide for transparent transfer between corresponding
processes of successive parallel glyphs.

e It allows the pool of available processors for glyph execution to expand and contract
dynamically at run time, reflecting changes in processor availability and usage, as well as
relative job priorities.

e It facilitates the creation of Khoros programs capable of continuing to run even in the

presence of processor or network failures, requiring only that the computational modules
handle the impact of side effects that are not visible at the level of a Cantata visual program.

The prototype TVPS was developed for Hewlett Packard’s PA-RISC architecture and has been
run on HP 9000 workstations and a Convex Exemplar at NRaD in San Diego using version
2.0.1 of Khoros. It has also been run on Sun workstations. ‘

In the main body of this report, we provide a detailed discussion of the research and
development activities leading to the prototype TVPS. In addition, we describe the steps
already taken towards identification and exploitation of commercial opportunities based on the

TVPS.

| Paradise and Piranha are trademarks, and Linda is a registered trademark, of Scientific Computing
Associates, Inc. Other trademarks used herein are the properties of their respective owners.

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

2. Proposed Phase Il Research

2.1 Research Objectives

As stated in Deliverable A001 to this contract, the principal technical objective for the Phase II
project was to develop a prototype Trellis Visual Programming System based on one of the
commonly used scientific workbench systems (Khoros®, AVS®, Data Explorer®, and Iris
Explorer®). The prototype TVPS was to have the following features:

1. It would have a two dimensional visual programming language interface.

2. It would automatically assign computational nodes to available processors in order to
minimize the time to completion.

3. It would allow parallel computational tasks as individual nodes and integrate their parallel
execution into the total computation in a seamless way.

4. Tt would allow the pool of available processors for parallel computation to expand and
contract as warranted so as not to compromise the interactive users of the processors.

As will be clear from further discussion, we have met these goals in the prototype TVPS.

2.2 Research Plan

As stated in Deliverable A001 under this contract, our plan was to begin development of the
Trellis Visual Programming System by first identifying which of the conventional workbench
environments to extend. The leading candidates were Khoros, AVS, Data Explorer, and Iris
Explorer. Our strategy was then to integrate the workbench code(s) with SCIENTIFIC’s
existing technology to produce a prototype TVPS. We then planned to extend and thoroughly
test this prototype TVPS.

The main tasks for the project were:

1. to extend the visual programming language, most likely from one of the four standard
workbench systems mentioned above, to include a structure for generalized data flow;

2. to develop a scheduler to dynamically map TVPS computational nodes onto available
processors for parallel execution;

3. to develop appropriate interfaces to permit the use of parallel C-Linda programs as TVPS
computational nodes; and

4. to investigate the use of Piranha-like ideas [6, 10] for the TVPS to allow the collection of
processors allocated to a TVPS session to dynamically expand and contract as availability
warrants.

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

3. Background Technologies

This project builds on two major component technologies: a visual program development and
execution system (Khoros), and a virtual shared object memory system (Paradise) that
includes an adaptive, dynamic scheduler for parallel and distributed applications (Piranha). This
section provides some basic background on these technologies.

3.1 Khoros

Khoros is a software integration and development environment that includes a number of
components:

1. avisual programming language (Cantata [18]),

2. asuite of software development tools that extend Cantata, making it easier to create new
applications, including an interactive user interface editor,

3. aruntime execution system, and

4. packages for interactive image display, 2D/3D plotting, and a large variety of image
processing, data manipulation, scientific visualization, geometry and matrix operations.

While Khoros’s programming services and software development tools were intended
originally to support development of engineering and scientific applications, it is just as natural
to apply them to nontechnical commercial applications as well. Applications written in Khoros
can take advantage of the same capabilities exploited by Khoros’s own data processing and
visualization routines, including the ability to transparently access large data sets distributed
across a network, operate on a variety of data and file formats without conversion, and
maintain a consistent presentation with a standardized user interface. The software
development environment provides developers with a direct manipulation graphical user
interface design tool, automatic code generation, standardized user interface and
documentation, and interactive configuration management. The Khoros software development
system can also be used for software integration, where existing programs can be brought
together into a consistent, standardized, and cohesive environment.

All information processing and visualization programs in Khoros are available via the visual -
programming language, Cantata [18]. Cantata is a graphically expressed, data flow visual
language which provides a visual programming environment within the Khoros system. In
Cantata, a visual program is described as a directed graph, where each node (called a “glyph™)
represents an operator or function and each directed arc represents a path over which data
flows. This flow-chart-like approach is a natural environment in which to describe applications,
particularly those that are based on coarse grain distributed processing. Khoros’s visual
hierarchy, iteration, flow control, and expression-based parameters make it a powerful
simulation and prototyping system for complex applications. It is widely used for just this
purpose by the Department of Defense and defense contractors.

In this project, most of our attention was focused on two particular aspects of Khoros: its
scheduling service and its data transport service. The standard implementation of Khoros
includes a scheduling daemon (phantomd) that determines when glyphs are ready to run and
then schedules the glyph on the local machine. In principle, phantomd supports general
distributed or parallel execution, but only a very limited capability is available in the released
version of Khoros (as of version 2.0.1). One goal of this project was to provide a simple, yet
very general and flexible means of executing Khoros programs in heterogeneous parallel and

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

distributed computing environments using a dynamic scheduler based on existing COTS
products from SCIENTIFIC.

The standard Khoros inter-glyph data transport mechanism uses files. One glyph writes its
output to a file, and the next glyph reads its input from the same file. This can be used to
support distributed computing, though care is required in heterogeneous environments, and it
may require special file system configuration to make sure that files are accessible where they
are needed. Another goal of this project involved replacement of this file-based data transport
mechanism with one that would be easier to configure and use.

3.2 Virtual Shared Object Memories

The software tools for parallel and distributed computing used in this project are based on a
memory model for multiprocess computing that generalizes the model made popular by
Linda® 1, 4, 15]. The model is based on the use of virtual, associative, logically-shared object
memories (VSOMs) that contain collections of logically-ordered sets of typed data, known as
“tuples.” Computational processes accomplish work by generating, using, and consuming

tuples.

The sorts of VSOMs supported by Linda and Paradise are tailored specifically to the needs of
parallel and distributed software ensembles by accommodating both data sharing and inter-
process coordination. These memories store not bytes, but complete multidimensional data
objects. Three basic access operations (out, in, and rd) are provided instead of the two (read
and write) that are provided by conventional address spaces, and these operations have built-in
synchronization. Data transfer between machines is implicit and demand-driven, based on
actual usage.

A key feature of SCIENTIFIC’s VSOMs is that they are associative memories. Tuples have
no addresses; they are selected for retrieval on the basis of combinations of their field types and
values. Thus the five-element tuple (4, B, C, D, E) may be referenced as “the five element
tuple whose first element is 4,” or as “the five-element tuple whose second element is B and
fifth is E” or by any other combination of element values. (Matching is sensitive to the
element types, as well as their values.) Formal parameters (or “wild cards™) are used in
selection templates to designate “output fields” that enable values to be transferred from

VSOMs into local variables.

Apart from their basic virtues, VSOMs provide a superior environment for program
construction and execution. Message passing libraries such as MPI [7, 13] and PVM [5, 17],
and generic shared address spaces with locks, are really sets of low-level operations; they are
not programming methods. A VSOM, on the other hand, provides operations and a
programming method as well —in brief, algorithms plus distributed data structures making
distributed or parallel programs.

Programming models based on VSOMs have another, less obvious advantage as well:
language independence. In general, the VSOM and its associated operations are orthogonal to
the base programming language — essentially the same syntactic forms work with
FORTRAN, C or any other similar language. As a result, parallel programming techniques
also become language independent, and programmers can quickly and easily transfer their
parallel programming skills to new situations without having to learn entirely new parallel

languages.
Many computing paradigms are well supported by VSOMs; here are just two important
examples(cf., [2, 3]):

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

1. Task bags and adaptive parallelism. “Task bags” are a representation of sets of
independent tasks that can be executed concurrently, in any order. With a VSOM, one
would implement a loop in which task descriptors were dumped into the VSOM, there to
be claimed by worker processes on an as-available basis. The extent of code modification
from a corresponding original serial program is quite modest.

A desirable feature of a VSOM-based task-bag paradigm (and one exploited by the TVPS)
is that it can be executed adaptively: the number of participating machines may change
during execution without affecting correctness. A runtime system such as SCIENTIFIC’s
Piranha system can transparently, dynamically and adaptively schedule and deschedule
machines based on any desired set of criteria (such as load, capabilities, physical presence,
job priorities, etc.). When tasks are descheduled, the VSOM can be used to store state
information (in essence redepositing a partially-computed task result); in addition,
programmers can specify “retreat” procedures that are executed when descheduling occurs.
These features make the VSOM-based approach a natural fit to the sort of computational
environments targeted in this work.

2. Ensemble Parallel-Distributed Applications. The VSOM model is especially well suited to
client-server systems, the most common form of distributed application. For example, a
parallel application on a dedicated multiprocessor might want to display data on a separate
graphics workstation. A VSOM provides a perfect medium for handling the sort of
asynchronous, often unpredictable data transfer required in this case. Using
SCIENTIFIC’s Linda/Paradise environment, even the operations that allow the processes
of the parallel application to share data are exactly the same ones that allow the processes
on the multiprocessor to share data with the graphics workstation.

A great strength of the VSOM model is its explicit support for distributed data structures, ie.,
data structures that are uniformly and directly accessible to many processes simultaneously.
Any tuple sitting in a VSOM mesets this criterion: it is directly accessible to any process using
that VSOM. Thus, a single tuple constitutes a simple distributed data structure, but it is easy
and often useful to build more complicated multi-tuple structures (arrays, queues, or tables, for
example) as well. The TVPS system built in this project uses just this sort of generality to
replace the Khoros file transport system by building an ordered inter-glyph data stream.

Another feature of the VSOM model is its intentionally loose coupling among processes.
Processes interact only with the intermediation of data stored in a VSOM. As a result, it
becomes very simple for processes to interact without knowing with whom they interact and
without any presumption of simultaneous execution. In the TVPS system, this translates into
the fact that the inter-glyph data can outlive the producing (upstream) glyph process to be used
as input by a consuming (downstream) glyph process that may not yet have been created and
whose physical location need not even be determined until it is created.

3.3 Paradise

Paradise is SCIENTIFIC’s most flexible and powerful parallel and distributed computing
environment. It is based upon the VSOM model, and it is capable of providing one or more
persistent VSOMs to be shared among multiple applications. The programs sharing these
common VSOMs remain completely independent, potentially running at different times or on
vastly different kinds of computers.

Paradise provides a great number of benefits for parallel and distributed computing, many of
which are particularly useful for the TVPS:

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

e It provides for multiple VSOMs that may be entirely independent of the applications that
create and use them. In fact, Paradise VSOMs may be persistent, so that they can continue
to exist even after their creating programs terminate. The TVPS uses a separate VSOM for

each output line in a Cantata visual program.

e It can connect existing programs quickly and easily. Completely independent programs
can share data with only minimal modifications. An important consequence of this fact is
that programs with different functions can be developed independently. When one
program changes, it need have no effect on any others with which it happens to share data.
Paradise brings modularity at the application level to ensemble computing, an important
feature for the TVPS, which needs to honor fully the Khoros commitment to standardized

inter-glyph interfaces.

e It supports dynamic attachments to shared data spaces. Programs sharing data need not
run concurrently, and applications can detach from and reattach to VSOM s as desired. This
means it is easy for the TVPS to schedule processes where and when it wishes, without

having to worry about getting data connections set up properly.

e It allows for transparent heterogeneity. Programs running on distinct, or even
incompatible, computer architectures can access a common VSOM without any special
handling. Paradise takes care of all necessary data conversion automatically using XDR. In
the context of the TVPS, this means it is straightforward for different glyphs to be executed

on different machine types.

e Itis based on the same underlying technology as SCIENTIFIC’s Linda, so it can be
combined with Linda to provide a single approach for both parallel and distributed
computing. Of course, any other approach for building parallel glyph modules (such as
message passing libraries like MPI or PVM, vendor-specific tools, or raw shared
memory) could be used as well, but the combination of Linda and Paradise in the context
of the TVPS is particularly natural and consistent architecturally.

e It offers a secure distributed computing environment. Paradise includes facilities for
controlling access to sharable VSOMs above and beyond those provided by the host
computer systems. This means that multiple TVPS applications can run concurrently

without interference.

e It can bring indirect parallelism to sequential applications. Paradise can be used to create
so-called “live libraries” — servers which perform various standard types of computations
for any client which requests them. Unlike standard subroutine libraries which have been
parallelized for a single type of computer, such servers can run in parallel on any available
computer system, allowing, for example, a sequential application on a mainframe to take
advantage of a specialized multiprocessor or the idle CPU capacity in a local area network
to perform computationally-intensive operations. In this way, available computing
resources can be dynamically deployed on an enterprise-wide basis. This sort of capability
could be used to support a parallel Khoros toolbox (though that has not been to date in this
project). -

e It provides for fault-resilient execution. Paradise includes a sophisticated fault resilience
facility which allows programs to guarantee data integrity despite hardware failures,
abnormal process termination, lost connections between computers, and other such
failures. Fault resilience is structured around a begin-commit transaction strategy similar to
that used by state-of-the-art database systems. Changes — atomic transactions in database
parlance — to a VSOM are not made permanent until they are committed by the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

application performing them, and uncommitted transactions are canceled in the event of
failures. In addition, Paradise provides an automatic file backing mechanism. The
combination of these fault resilience features make it possible to build reliable Khoros
applications using the TVPS.

3.4 Piranha

In our discussion of the task-bag paradigm above, we referred briefly to the concept of
adaptive execution of parallel programs. For the Linda and Paradise environments, this is
accomplished through the use of Piranha [6, 10]. Although the (theoretical) Piranha model is
completely general and makes no assumptions about how programs are organized, the
SCIENTIFIC implementation used in the TVPS exploits many of the features of Paradise,
including the VSOM model and the operations used to access the VSOMs. Appendix A to this
report contains a variety of documentation about Piranha, including two UNIX man pages and
a section from the Paradise User’s Guide [16].

The central design goal of Piranha is the harnessing of all the CPU cycles available on
multiprocessors or on workstations within a local-area (or even wide-area) network. It is
intended to be highly flexible, allowing the set of processors participating in the program
execution — the piranhas — to expand and contract during the course of a run, in response to
the changing usage levels on the individual processors, to the relative importance of jobs
competing for execution, and to the availability of specific processors, among other things. For
example, if a processor becomes free after a Piranha program has started, it can still join in the
execution. On the other hand, if the load on a participating processor should increase during a
run, execution of the Piranha program on that processor can terminate without disturbing the
other processors or affecting the correctness of the final program results.

Piranha programs are structured around three key routines:

e feeder, which runs on a designated home processor and oversees the entire
computation;

e piranha, which causes the real work to be done in the parallel computation; and

e retreat, which is called whenever a Piranha process must terminate in mid-
execution because the processor on which it is running needs to be reassigned.

In the context of the TVPS, the feeder controls the overall execution of a Khoros program,
creating tasks that correspond to glyph computations that are “ready to run.” The piranha is
simply a UNIX routine that causes the proper glyph executable program (typically a sequential
program) to be executed (via fork/exec) on whatever processor is running that copy of the
piranha. Retreat simply resets the state of the input and output tuple transports as if the
corresponding glyph had never started execution.

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

10

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

4. Phase Il Research Results

The research in this project was divided into two major parts:
1. Evaluation of the various visual programming environments, eventually leading to the
selection of Khoros; and

2. Construction of the TVPS, including basic research on Paradise and Piranha and
integration of those technologies with Khoros.

4.1 Evaluation of Visual Programming Environments

In the first stage of the Phase II project, we investigated a number of visual programming
environments for use in the TVPS. The four major candidates were:

1. Khoros, a product of Khoral Research Inc.;
AVS, a product of AVS, Inc.;

2.
3. Data Explorer, a product of IBM; and
4.

Iris Explorer, a product of Numerical Algorithms Group, Ltd., based on a product of the
same name of Silicon Graphics, Inc.

All of these products were originally designed for purposes other than serving as general visual
programming environments, although all have many of the features desirable for such a use.
Khoros was originally intended for specifying data flow programs for image analysis and
signal processing applications, though it included a visual programming front end (Cantata)
designed to support the construction of data flow applications. AVS, Data Explorer and Iris
Explorer were all developed as high-end visualization tools: they support a data flow paradigm
similar to Khoros’s, but their basic assumption is that the computational modules (called
“glyphs”) perform visualization-related operations rather than general purpose computation.

In Figure 1 we compare the most important features of the four products. For each feature, we

Feature Khoros| AVS DX IX
Generality of control flow (Front End) ++ - -- +
Generality of data access (Back End) 0 - -- -
Support for distributed execution + + + +
Extensibility ++ + +
Availability & stability of source code + - - --
Availability of “developer support” - -- - 0 -
Portability/Platform coverage ++ ++ 0 -
Product Support | - + o | o
Value to NRaD - , ++ ? ?-
Commercial potential for SCIENTIFIC - ++ 0 -

Figure 1: Comparison of Visual Programming Environments

11

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

have assigned a rating between “~=” (very poor fit or unsuitable for this project) and “++”
(extremely good fit for this project), based on our perception of the product’s suitability for this
project.2 The features considered were:

Generality of Control Flow: Typical data flow programs do not allow for loops or
conditionals. The rating for each of the products reflects their explicit support for such
program constructs, which are important for development of general parallel and
distributed programs. While Khoros was clearly the best at the time we evaluated the
products, Iris Explorer was undergoing revision intended to enhance its control flow
capabilities.

Generality of Data Access: None of the products provides for particularly general and
flexible access to data passed between glyphs. However, the three visualization-based
products (and especially Data Explorer) make the presumption that all glyph computational
modules fit into very rigid interfaces suitable for visualization purposes, and they make it
quite difficult to adapt to non-visualization environments. Khoros does not impose such
severe restrictions on data access, but it is clearly designed with the intent that data is to be
managed by low-level internal routines and is, in general, not to be accessed by non-KRI
routines except through well-specified interfaces.

Support for Distributed Execution: All four products make it possible, though not easy,
to run some glyph computations on one machine and some on another. The TVPS makes
such distributed execution entirely transparent, which is a significant enhancement over any

of the four products.

Extensibility: All of the products make it “possible” to add new glyph modules, though
the ease of doing so varies depending on the rigidity of the module interfaces. Khoros is
clearly the most flexible, while Data Explorer requires modules to fit into a small number
of different classes, each with a very rigid, visualization-oriented interface.

Source Code Availability: Khoros source code is publicly available (though it is not in the
public domain). All the others are commercial products, and the vendors view the source
code as highly proprietary. We were unsuccessful in negotiating arrangements for source
code access with any of those vendors.

Developer Support: This rating reflects our assessment of the ease with which we would
be able to obtain support for or assistance in possible changes required in the base product
to support the extensions required for the TVPS. Basically, none of the three commercial
developers expressed interest in providing much help, and the Khoros product was
explicitly supported only as a research product (though that may have changed since we
made this assessment).

Portability/Platform Coverage: Khoros and AVS have been used on a wide variety of
UNIX platforms, so, in principle, at least, they would be suitable for a heterogeneous
distributed environment. Data Explorer, while originally oriented entirely to IBM’s own
machines, has been extended to a few workstations as well. Iris Explorer, at the time of the
assessment, was to be available only on SGI machines (from SGI itself) and Sun

workstations (from NAG).

Product Support: No support was available for Khoros (though there was and is an
active on-line news group in which users provide assistance to one another, with occasional

2 We would remark that suitability or unsuitability for use in this project is unrelated to the quality of the
product for its intended purpose. We made no effort to evaluate the products for their intended purposes.

12

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

input from Khoral Research). The other products are commercial offerings, and the
vendors offer varying degrees of customer support.

e Value to NRaD: This represents our assessment of the fit between each product and the
NRaD efforts. To our knowledge, only Khoros has a significant user base at NRaD, while
the other products are either unused or used by a very small number of users.

e Commercial Potential for SCIENTIFIC: It appeared to us that AVS was the most
suitable product to serve as the basis for a commercial version of the TVPS. This was
based mainly on the fact that it has a widespread and committed user community, as well
as on its portability. Iris Explorer has historically been restricted to SGI platforms, and it is
unclear whether it will make a successful transition to a broader machine base. Similar
comments apply to Data Explorer, though IBM had already released it for a number of
non-IBM workstations at the time of our assessment. Finally, Khoros was purely a
research and custom application environment at the time of our assessment, though that
has changed recently as Khoral Research has begun to pursue commercial opportunities.

The final line of the table in Figure 1 is an assessment of the priority of each product for this
project. The priority of Khoros was high due to its importance to NRaD and the Department of
Defense more generally. The priority of AVS was high due to its commercial potential; |
subsequently, however, we were unable to reach a suitable development agreement with AVS,
Inc., so we based the TVPS entirely on Khoros.

4.2 Constructing the Prototype TVPS

The prototype TVPS is a version of Khoros to which two major, independent new features
have been added as options. At run time, UNIX environment variables can be set to control
which, if either, of the new features is used. :

e A new inter-glyph data transport system (called the tuple transport) has been added as an
optional replacement for the standard file transport system; and

e A dynamic glyph scheduler based on Paradise Piranha™ technology has been added as an
optional replacement for the Khoros phantomd scheduling daemons.

Combining Khoros and Paradise VSOM Technology

”"

Khoros with file transport Khoros with tuple transport

Figure 2: Data Transport Comparison

13

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Both changes exploit virtual shared object memory (VSOM) technology and require the
presence of a Paradise system to provide run-time support for the VSOMs. Figure 2 compares
the original Khoros design with that of the TVPS with respect to the way that data moves
through the application. It should be emphasized that the changes are completely independent
of one another: the parallel scheduler and the tuple transport can be used together or separately,
depending on the particular computing environment.

The TVPS relies on Khoros and its visual programming interface Cantata to provide all of the
interface visible to the user. Under the covers, the TVPS uses Paradise VSOMs and the
Paradise/Piranha run-time system to provide the parallel functionality. To most Khoros users,
the changes should be transparent; existing Khoros applications should run normally, except

that they will now run in parallel.

4.2.1 The Tuple Transport

In the prototype TVPS, a separate virtual shared memory is used for each output line in the
Khoros visual program. Within each such VSOM, the data are organized as a linked list of
tuples containing a stream of data in what amounts to 2 virtual file. Each VSOM is actually
stored in the virtual memory of a Paradise server,? so the data can be accessed using standard
Paradise operations. The data transport layer of Khoros was modified to perform all the usual
file operations (e.g., seek, rewind, read, write, etc.) by manipulating the tuples in the VSOMs.

In theory, the tuple transport has a number of advantages:

1. The VSOM:s are accessible from any machine that can “see” the Paradise server (e.g., any
workstation on the same LAN, or any processor on the Exemplar, in the NRaD case). This
is completely independent of the configuration of NFS or any other remote file access
system. In addition, it means that machines with incompatible file systems (such as PCs
running Windows NT and UNIX workstations) can share data.

2 Since each VSOM is kept in virtual memory by a Paradise server, data access should be
somewhat faster than with true disk I/O (though this may depend on the characteristics of
whatever remote file system might be in use for the disk 1/O).

3. The data in the VSOMs is accessible by any Paradise program, so it is straightforward to
share the data among several independent programs concurrently. This makes it especially
easy for several downstream glyphs to share the same upstream output data. In addition,
this observation suggests a simple strategy for supporting parallel glyph programs by
having them share information through Paradise VSOMs (though we did not attempt this).
It also offers the possibility of creating system monitors that keep track of the state of the
overall Khoros application by observing the contents of the interglyph VSOMs.

In the course of this project, we did not have time to run significant benchmarks or tests to
verify these advantages in practice. However, significant experience with Paradise in other
settings leads us to believe that all actually do hold.

4.2.2 Piranha Scheduling

In order to support parallel executions of Khoros visual programs, we developed a modified
version of the standard Piranha system that is included in SCIENTIFIC’s Paradise system.

3 Each VSOM is stored and managed by exactly one Paradise server; but there may be several
independent Paradise servers, each of which is responsible for a subset of the total collection of VSOMs.

14

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

The modifications were designed to cater to several significant differences between Khoros
applications and traditional Piranha programs:

1. Each glyph module, which becomes a Piranha task in the parallel Khoros, is a complete
program. In other uses of Piranha, a Piranha task is merely one function in a larger

Paradise program.

2. The glyph modules are created without any knowledge of or support for Paradise. In
ordinary Piranha programs, the Paradise compilation system has been used, so it is
possible to insure that various support routines for Paradise and Piranha are present.

3. Only one copy of each glyph module is permitted to execute at any given time (a Khoros
restriction that might be relaxed, as we discuss later). In Piranha, several copies of the task
function can execute concurrently.

4. Except in the case of failures, Khoros glyph modules are always permitted to run to
completion without retreating, whereas Piranha tasks may retreat at any time without
warning. The reason for this restriction on glyph executions is that glyph modules are built
as complete programs, without any requirements that they be restartable. Retreating such a
program might cause side effects (e.g., partially completed I/O) that could not be handled
properly. When failures occur, however, the modified system does restart the glyph
module in an effort to move the entire application towards successful completion.

Incorporating the modified Piranha system into the TVPS was straightforward. Khoros
scheduling is data driven. Any glyph module is considered “ready to run” whenever it satisfies
two criteria:

1. Its previous execution (if any) is complete.
2. Complete, new inputs are available for each of its incoming data lines.

In the TVPS, each time Khoros declares a given glyph as “ready to run,” a Piranha task is
generated that will execute the corresponding glyph program. The Piranha run-time system (a
Joose-knit collection of cooperating user-level daemons running on available processors) then
schedules the task on the first available suitable processor. The glyph executable itself is
unchanged; only the Khoros interface routines have been modified to go to the appropriate
VSOMs to retrieve input or create output. Paradise transactions are used automatically by the
Piranha system to make certain that failed glyph executions (due, for example, to processor
failures) are restarted with proper input. (However, side effects arising from partial execution
are not handled in the prototype system.)

Apart from the obvious advantages of parallel/distributed execution, dynamic scheduling, and
some degree of fault resilience, we believe that the use of Piranha scheduling in the TVPS can
offer a significant portability advantage. Specifically, one of the most frequent difficulties with
Khoros is porting it to new machines and/or operating systems. Much of the difficulty lies in
the graphical interfaces, file system issues, and the scheduling daemons. With the TVPS,
however, Khoros programs can exploit a wide range of machines, provided only that Paradise,
Piranha and the glyph programs (as opposed to Cantata and the Khoros system itself) runon
the machines. Paradise and Piranha already run on a large number of UNIX machines and on
personal computers running the Windows NT operating system, and we expect that porting
glyph programs should be far easier than porting the entire Khoros system itself (which
contains many thousands of lines of code).

15

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

16

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

5. Commercialization

A Commercialization Plan was provided as part of the pre-award documentation for this Phase
11 project. In addition, SCIENTIFIC has provided a proposal to the Navy for an optional 6-
month project to carry out some of the technical work required to develop a commercial
version of the TVPS. The timeline for the proposed option project is shown in Figure 3. Partial
support for marketing and commercialization efforts has been obtained from Connecticut
Innovations, Inc., a quasi-public Connecticut technology-funding corporation, under a
Connecticut Phase III Assistance Program Agreement in the amount of $50,000. These funds
have been used to partially support a number of the initial steps towards commercialization.

l Assess Suitability of Functionality
[____: Remove NRaD Features & Restrictiions
E Develop Implementation Plan%

[Implement New/Enhanced Functionality I

r Develop and Apply Test Suite I

[Produce Commercial Documentation I

Report

Month 1] Month 2 | Month 3 Month 4 | Month 5 Month 6

Figure 3: Phase III Time Line

To date, we have taken the following actions to develop commercial revenues from the Phase
II research and development:

1. We have retained a consultant to help us evaluate the potential of the TVPS or derivative
products as a means of generating commercial revenues. This evaluation has included
assessment of the current functionality as well as preliminary recommendations in regard
to the most likely targets for early exploitation of a commercial version of the TVPS.

2. In the short term, it appears that there could be significant revenue generation from the
TVPS by working with commercial contractors to the Department of Defense, and we are
pursuing a variety of arrangements of this sort (though none are complete as of this time).
Dr. Andrew Sherman, the Principal Investigator for the Phase II project, and Dr. Nicholas
Carriero recently attended an ARPA meeting in Atlanta to pursue these opportunities and
explore funding for related work on MPL.

3. With the assistance of our consultant, we have determined a number of additional features -
that would be appropriate for a commercial version of the TVPS. A partial list includes:

o Generalization of the data storage model in the inter-glyph VSOMs. The present model
creates a virtual file, effectively serializing the processing by downstream glyphs. In
some instances (e.g., where a downstream glyph is stateless and doesn’t care about the
order in which discrete inputs are processed), it would, in fact, be both possible and
desirable to permit multiple copies of a glyph to be executed simultaneously on

17

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

different processors. (As noted above, this would require relaxing a current restriction
in Khoros.) By generalizing the data storage model to be more like a queue of discrete
inputs, rather than a continuous stream of bytes, such multiple executions would
become possible. This could also enable the run-time system to automatically
instantiate extra copies of certain modules to overcome apparent bottlenecks in the flow
of data through the Khoros glyph network.

o Enhanced fault tolerance. The prototype has some amount of fault resilience due to the
use of the Paradise transactions. This could be enhanced and fortified in a variety of
ways, including through the use of mechanisms designed to aid in reversing side
effects from partial execution of glyphs.

e Parallel glyphs. At present, a glyph executable can be a parallel program in its own
right, but it is up to the glyph developer to make certain that the inputs are properly
obtained from upstream glyphs in a suitable manner. For example, if the upstream
glyph is also parallel, the prototype provides no easy-to-use Cantata-level facility to
transfer data between corresponding subprocesses in the two glyphs (though the
developer could use VSOM technology explicitly). By exploiting the VSOM
architecture and the tuple transport, however, it should be possible to specify parallel
data transfer between corresponding glyph subprocesses, reserving the existing inter-
glyph Khoros data flow lines for global (among the parallel components of a glyph
executable) and control information.

e Persistent glyphs. At present, each glyph executable is reloaded each time it is used (to
be consistent with standard Khoros practice). It should be fairly straightforward to
create “persistent glyphs” that continue to run throughout the entire execution of the
Khoros program, simply looping through successive sets of input data.

e Enhanced data locality. In the prototype, a single centralized Paradise server is used to
store the VSOMs. This is a bottleneck, because it serializes data access, concentrates
the communication load in one segment of the interconnection fabric, and tends to lead
to extra communication operations. Paradise, however, supports the use of multiple
servers, and it ought to be possible to exploit this capability to reduce the bottlenecks
and increase communication performance and scalability.

e Improved environment awareness. In the prototype, the TVPS operates independently
of any existing job control or system information systems that may be available. Since
it is trying to exploit multiple networked resources, it would be desirable to make the
TVPS work cooperatively with batch queuing systems (such as LSF [14], NQS [12],
or LoadLeveler [8], for example) and to have the TVPS exploit the sort of network
environment and resource information available from tools developed in projects like

the SmartNet project at NRaD.

Work on some of these enhancements would be carried out under the optional project
already proposed to the Navy. In addition, we have recently submitted a proposal abstract
entitled “Combining Virtual Shared Memory and Visual Programming for
Metacomputing” to ARPA for related work under their BAA 96-07.

4. We have held discussions with Hewlett Packard and Convex Computer Corporation
regarding commercial versions of the technologies used in this project. Both HP and
Convex are more interested in the Paradise, Piranha, and Linda products, than they are in
the TVPS per se. We have a well established commercial relationship with HP, and we
have a long history of working together to market SCIENTIFIC’s products using such

18

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

tools as direct customer presentations, HP-sponsored industry-focused seminars, and joint
booths at trade exhibitions. Our relationship with Convex is much newer, and we have
focused primarily on technical product development issues, including ports of Linda and -
Paradise to the Exemplar, for example. Following the merger of HP and Convex, we
anticipate a stronger relationship with both companies. A first step in this direction was the
‘nvitation we received from Convex to participate in the joint HP/Convex booth at
SuperComputing ’95 this past December in San Diego.

5. We have held discussions with Khoral Research, Inc. concerning joint commercialization
of the TVPS product itself. Under the terms of our Khoros license from KRI (required to
develop the TVPS and deliver it to the Navy), KRI owns all of the modifications of
Khoros and is able, in principle, to commercialize the derivative work represented by the
TVPS. However, KRI realizes that the Paradise and Piranha technologies would be key
components of any derived commercial product, and, moreover, that SCIENTIFIC already
has established marketing and sales positions in important commercial markets such as
finance, petroleum, computational chemistry, among others. As a result, both companies
believe that it makes most sense to work jointly to achieve commercial success.

19

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

20

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

6. Conclusions

The research and development activities have clearly met the goals of the project by developing
a prototype TVPS capable of executing in parallel in a heterogeneous parallel/distributed
computing environment. As we have already pointed out, the TVPS offers some significant
advantages to users over either Khoros or Paradise alone, including:

1. The visual front end is easy to use, making the development of parallel programs almost
transparent.

2. The fault-resilient dynamic scheduling in the TVPS means that users can be assured of
successful job completion without advance designation of computation locations.

3. The use of Piranha as a glyph program executor reduces the difficulty of porting Khoros
applications to new machines and operating systems.

4. The tuple transport eliminates many of the difficulties involved in heterogeneous, file-based
data transfer.

We believe that a commercial version of the TVPS, which we hope to bring to market in
collaboration with Khoral Research, Inc., should be of great interest to the growing community
of program developers who wish to exploit parallel and distributed computing without
becoming involved in the low-level implementation details.

Under the terms of the Phase I contract, SCIENTIFIC will enter into a license with the Navy
to install a version of the TVPS on the Convex Exemplar and networked HP workstations at
NRaD in San Diego. In addition, NRaD has requested installations for SGI workstations, a PC
running Windows NT, and a Sun workstation running the Solaris operating system.
SCIENTIFIC will work with NRaD to satisfy this request by installing the required Paradise
and Piranha support on these systems and assisting in installation of required Khoros
components (if any). (At the present time, SCIENTIFIC’s modified version of Khoros runs
only on the Exemplar, HP workstations, and Sun workstations running the SunOS operating

system.)

21

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

22

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

7. References

[1] L. Caganand A. Sherman, “Network Parallel Computing Goes Mainstream.” IEEE
Spectrum 30:12 (December), 31-35 (1993).

[2] N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course.
Cambridge: MIT Press, 1990.

[3] N. Carriero and D. Gelernter, “Linda and Message Passing: What Have We Learned.”
Research Report, Department of Computer Science, Yale University, August 1993.

[4] N.J. Carriero, D. Gelernter, T. Mattson, and A.H. Sherman, “The Linda Alternative to
Message Passing Systems.” Parallel Computing 20:4, 633-655 (1994).

[5] A.Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM:
Parallel Virtual Machine — A Users' Guide and Tutorial for Networked Parallel
Computing. Cambridge, MA: The MIT Press, 1994.

[6] D.Gelernter and D. Kaminsky, “Supercomputing Out of Recycled Garbage:
Preliminary Experience with Piranha.” Proc. Sixth ACM International Conference on
Supercomputing, Washington, DC, 1992.

[7] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface. Cambridge, MA: The MIT Press, 1994.

[8] IBM, LoadLeveler User’s Guide, 3rd Edition, August 1995. Poughkeepsie, NY, 1995.

[9] R.Jordan, et al, “Khoros: A Software Development Environment for Data Processing.”
DSP Applications 2:3 (1993).

[10] D.Kaminsky, “The Piranha System for Network Computing.” Research Report, Dept.
of Computer Science, Yale University, 1991.

[11] Khoral Research Inc., Khoros 2 Manual Set (8 Volumes). Albuquerque, NM, 1995.

[12] B.A.Kingsbury, “The Network Queueing System — (N QS).” Draft Report, Sterling
Software Inc., April 1992.

[13] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard.
Version 1.0, May 5, 1994.

[14] Platform Computing Corp., LSF' User’s Guide, Second Edition, August 1995. Toronto,
1995.

[15] Scientific Computing Associates Inc., Linda User’s Guide & Reference Manual
(Version 3.0). New Haven, CT, 1995.

[16] Scientific Computing Associates Inc., Paradise User’s Guide & Reference Manual
(Version 4.0). New Haven, CT, 1996.

[17] V.S. Sunderam, G.A. Geist, J. Dongarra, and R. Manchek, “The PVM Concurrent
Computing System: Evolution, Experiences, and Trends.” Parallel Computing 20:4
(1994).

[18] Young, Argiro, and Kubica, “Cantata: Visual Programming Environment for the
Khoros System.” Computer Graphics 29:2 (May 1995), 22-24 (1995).

23

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

24

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. UNCLASSIFIED

Appendix A: Piranha Documentation

This appendix contains three documents that describe Piranha and discuss its use in building
adaptive parallel or distributed applications.* The documents are:

1. The UNIX man page for Piranha;

2. The UNIX man page for Piranhad, the Piranha scheduling daemon; and

3. The section entitled “Using the Piranha Model in Paradise Programs” from the Piranha
User’s Guide and Reference Manual [16].

4 Each of the documents contains its own internal page numbers. In addition, we have added a page
number of the form “A-x”, centered at the bottom and beginning with A-1, for clarity in sequencing this

document.

25

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This page intentionally blank.

26

PIRANHA(1)

NAME

USER COMMANDS PIRANHA(1)

piranba — Adaptive parallel programming environment

SYNOPSIS

piranha-program [arg ...]

DESCRIPTION

Piranha is a parallel programming environment that allows idle cycles to be used on networks of
workstations. When a piranha program is executed, that process executes the user supplied feeder()
routine. When piranha processes are started on idle workstations by the piranhad servers on behalf of
a piranha program, those processes execute the user supplied piranha() routine. Normally, the local
process acts as the master, supplying tasks for the remote worker processes, and collecting the results.
If a workstation becomes busy while executing a piranha process, the piranhad signals the piranha
process to exit. This causes the user supplied retreat() routine to be executed by the piranha. The
retreat() routine will only be executed while retreats are enabled. The piranha() routine calls the rou-
tines enable_retreat() and disable_retreat() to indicate when it is safe to retreat. It is an error to leave
retreats disabled for many seconds at a time. For more information, see piranhad(1).

OPTIONS

+FEEDER

This is used to delimit user arguments from piranha specific arguments. It also indicates that
this is the start of a new piranha job that will execute the feeder function, as opposed to a
worker process that will execute the piranha function.

+PIRANHA

This is used to delimit user arguments from piranha specific arguments. This indicates that
this is a worker process that will execute the piranha() function. This is only used for debug-
ging piranha programs.

—debug <string>

This indicates that piranhad should not start piranha processes on behalf of this program.
Instead, the user will manually start piranha processes, presumably using a debugger, passing
this same string to each. This option corresponds to the PIR_DEBUG environment variable.

—suffixstring <string>

~v/+v

Suffix string to append to executable file names, when needed. The default suffix string
depends on the platform, and is known by piranha programs and piranhad. This is very use-
ful for running heterogeneous piranha programs. For example, let’s say a piranha program
named "foo.sparc” is executed on a SunOS 4.1 system. During initialization, the piranha pro-
gram will notice that the ".sparc” was used. It will tell the piranhad that its program name is
"foo" with a suffix string appended. A piranhad on an HP will then try to execute a program
named "foo.hp", and an RS/6000 will try to execute a program named "foo.rs6k". If the
piranha program on the local machine was called simply "foo", the piranha program will
notice that the suffix string was not used, and will tell the piranhad that its program name is
"foo" without a suffix string. The piranhad will then try to execute a program named "foo",
regardless of its architecture. For SunOS 4.1, the default value is ".sparc”. For SunOS 5.x,
the default value is ".solaris".. For hpux, the default value is ".hp". For RS/6000, the default
value is ".rs6k". For PowerPC, the default value is ".ppc". For SGI, the default value is
".sgi". This option corresponds to the PIR_SUFFIXSTRING environment variable.

Synonymous with —verbose/+verbose.

—vv/+vv Synonymous with —veryverbose/+veryverbose.

~verbose

+verbose

SCIENTIFIC

Turns on verbose mode, which produces informational status messages.

This option turns off verbose mode. This is the default.

Last change: June 25, 1995 1
A-1

PIRANHA (1) USER COMMANDS PIRANHA (1)

-~veryverbose
Turns on very verbose mode, which produces the maximum amount of informational status

messages.

+veryverbose
This option turns off very verbose mode. This is the default.

HETEROGENEOUS EXECUTION
Piranha can be used to execute programs on a heterogeneous network of workstations. Since Paradise
does all the necessary data conversion for tuple operations, the only difficulty is specifying the correct
executable file for each workstation. There are basically two ways of doing this: executable files can be
named with appropriate suffix strings, or map files can be used to equivalence different directories for
different platforms. See piranhad(1) for more information.

DEBUGGING
To debug piranha programs, standard sequential debuggers (such as dbx or gdb) are used to execute
the feeder process and each of the piranha processes. This is done manually, without the use of
piranhad at all. To do this, the +FEEDER and +PIRANHA options are used so that the program
knows whether it is the feeder or a piranha. The —debug option is used to specify a string that will be
used to register or look up the piranha tuple space handle.

For example, the feeder could be started in one window with the following commands:

example% gdb foo
(gdb) break feeder
(gdb) run +FEEDER -debug foo_example

The feeder process will create a tuple space and register it with the handle server using the name
"foo_example". This name is arbitrary, but should be unique to avoid conflict with other tuple space
registrations.

A piranha could be started in another window with the commands:

example% gdb foo

(gdb) break piranha

(gdb) run +PIRANHA -debug foo_example

The same debug string must be specified so the piranha will properly rendezvous with the feeder pro-
cess.

Since the piranhad are not used, the piranha processes will never be signaled to retreat. To test
retreating, the routine piranha_retreat can be called either from the piranha program itself, or via the
debugger (using the "call" command in dbx or gdb). This should only be called when retreats are
enabled, otherwise an error will be reported. A break point should probably be put on the retreat func-
tion to avoid losing control of the process. The piranha process will exit as a result of executing
piranba_retreat.

EXAMPLES
Consider the following minimal piranha program:

#include <paradise.h>
extern TSHANDLE pir_ts;

int feeder(argc, argv)
int argc;

char *argv(];

{

int i, tid, input, result;

/% Generate the tasks */
for (i = 0; i < NUM_TASKS; i++) {

SCIENTIFIC Last change: June 25, 1995 2
A-2

PIRANHA (1) USER COMMANDS PIRANHA((1)

tid = input = j;
out @ pir_ts("task", tid, input);
}

/% Collect the results in any order */
for (i = 0; i < NUM_TASKS; i++) {
in @ pir_ts("result”, ? tid, ? result, ? status);

if (status == 0)
printf("%d squared is %d0, input, result);
else

printf("error computing square of %d0, input);

}

return(0);

}
static int tid, input;

int piranha(argc, argv)
int argc;

char *argv(];

{

int result;

while (1) {
/* Get and process the next task */
in @ pir_ts("task", ? tid, ? input);
enable_retreat();
result = input * input;
disable_retreat();
out @ pir_ts("result", tid, result, 0);

}

}

int retreat()

{
/+ Return task to the bag */

out @ pir_ts("task", tid, input);

return(0);

}

Since this is a Paradise program, it must include paradise.h. Also, there is declaration of a tuple space
handle, pir_ts. This is automatically created by the feeder process, and automatically opened by the
piranha processes. Although not necessary, most piranha programs will use this tuple space exclusively.
The feeder() routine creates a number of task tuples, and then collects the result tuples, printing the -
results. The piranha() routine has an inifinite loop which gets a task, enables retreats, computes the
task, disables retreats, and returns the results of the computation. The retreat() routine simply returns
the task tuple, using two external static variables to communicate between the piranha() and retreat()
routines.

To compile and link this program, the cpe(1) program is used. For example,
example% cpc -paradise piranha -o foo foo.cl

SCIENTIFIC Last change: June 25, 1995 ' 3
A-3

PIRANHA (1) USER COMMANDS PIRANHA((1)

To start piranha program "foo" passing it the argument "10", it is executed as any standard program, as
follows: :

example% foo 10
To start piranha program "foo" with argment "test” and verbose messages, execute the command:
example% foo test +FEEDER -v

SEE ALSO
piranhad(1), paradise(1), cpc(1), fpc(1)

SCIENTIFIC Last change: June 25, 1995 4
A-4

PIRANHAD (1) USER COMMANDS PIRANHAD (1)

NAME

piranhad - Piranha server

SYNOPSIS

piranhad [flag ...]

DESCRIPTION

Piranhad is a server that supports adaptive parallelism using the Piranha model. It starts piranha
processes on behalf of piranha programs, acting as a manager for the node that it runs on. Piranhad
starts piranha processes when the node is idle, and signals that the piranha should retreat if the node
subsequently becomes busy.

Piranhad is a Paradise application, so a Paradise server must be running in order to start a piranhad.
Only one piranhad can be executed on a given node and Paradise server. Any number of piranhad
can be started to cooperate in executing piranha jobs. Piranha programs should work properly if there
is only one Piranhad, but there must be multiple piranhad to allow piranha programs to execute in
parallel.

A given piranhad will only execute jobs that have the same uid and gid as itself unless piranhad is
executing as root. If it is root, it will use setuid(2) and setgid(2) to become the same uid and gid as
the process that started the piranha job. An authentication scheme is used to prevent piranhad from
becoming a different user than the piranha job. For security sensitive sites, it is recommended that
piranhad not be run as root. One possible setup is to use a special piranba account to execute
piranhad, perhaps in a restricted environment.

While the node is idle, piranbad can schedule different piranha jobs to run, giving each job a time
quantum to run. Currently, only one piranha job can run at a time on a given node. Any number of
piranha jobs can be running across the group of piranhad.

If a piranhad attempts to execute a piranha program and fails (due to a bad uid/gid, or not finding the
executable file, for example), piranhad will remember that the job is bad, and give up trying execute it
for some period of time (about five minutes) to avoid repeatedly trying to execute the same bad job. If
all piranhad decide that the job is bad, the piranha program will never complete.

If a piranhad tells a piranha process to retreat and it doesn’t, the piranhad will respond according to
the resources "retreattime”, "termtimeout”, and "killtimeout". These resources tell the piranhad how
long to wait for the piranha process before taking further action. The piranhad can be made to signal
retreat for a specified period of time, and then start sending it a SIGTERM signal. It can then start
sending it a SIGKILL signal if the piranha process continues to persist. Each of these phases can be
specified to be infinite, or skipped altogether. The default is to keep sending a retreat signal forever, so
the terminate and kill phases will never come into play.

In addition to the command line options, a configuration file, called piranha.config, is used to customize
the behavior of piranhad. It contains resource specifications which follow the rules commonly used
when specifying X11 application resources. For each resource specification there is a corresponding
command line option, and vice versa. The basic rules for resource specifications are explained in the
"CONFIGURATION FILE" section below.

In addition to the configuration file, piranhad also uses map files to handle differences between the file
systems on the different nodes that the piranhad are running on. See the "MAP TRANSLATION" sec-
tion for more information.

‘Piranhad should not be used when debugging piranha programs. To debug a piranha program, it i

should be started manually using the —debug option. See piranha(l) for more information.

OPTIONS

The following options each correspond to a resource/value pair of the same name in the configuration
file, except as noted. See the "CONFIGURATION FILE" section for a description of the format used
by the configuration file.

-advance <floar>

SCIENTIFIC Last change: June 25, 1995 1

A-5

PIRANHAD(1) USER COMMANDS PIRANHAD (1)

Load average below which the piranha process will advance. This value should be more than
one less than the value specified by the —retreat <floar> option, otherwise the piranhad may
cycle continuously between being available and unavailable. The default value is 1.9.

-advancecheck <seconds>
Number of seconds to wait between checks to advance. Setting this value to a very small
value could cause piranhad to consume a significant amount of CPU time, and thus annoy the
user of the workstation. The default value is to check every 10 seconds.

—enabled never | check | always
Determines when piranhas can use the node. The literal value "never” means that piranha can
never use the node. The value "check" means that piranha can use the node when it is idle.
The value "always" means that piranha can always use the node, regardless of idleness. The
default value is "check".

-host <server-host>
Name of the host running a Paradise server. The default is to use the host specified by the
PARADISE HOST environment variable, or the local host, if PARADISE HOST is not
defined.

~idle <seconds>
Number of seconds that the node must be idle before it can be used by a piranha. To deter-
mine idleness, piranhad checks when various devices were last used. These devices include
such things as the console keyboard, the mouse, and pseudo-terminals, although not all of
these are supported on all platforms. A value of zero means to ignore user idleness, however
load average may still be checked. The default value is 300 seconds (5 minutes).

—~jobcheck <seconds>
Number of seconds to wait between checks for a waiting job while the workstation is idle and
available. Since the node is idle, this value can be relatively small without annoying anyone.
The default value is 10 seconds.

=killtimeout <seconds>
Number of seconds to wait for a piranha to die after starting to send the piranha a SIGKILL.
A value of zero means to never timeout, and a value of -1 (or any negative value) means to
skip the kill phase. The default is to skip the kill phase (as indicated by a value of -1).

~loadperiod 115115
Load average period: 1, 5, or 15. The default value is 5, for 5 minute load averaging.

—quantum <seconds>
Minimum number of seconds allotted for each piranha job. After a piranha process has exe-
cuted for this period of time, the piranhad may ask the current piranha process to retreat, and
it will then schedule a new piranha process to run. The default time quantum is 300 seconds
(5 minutes).

~retreat <float>
Load average above which piranhas retreat. This value should be more than one greater than
the value specified by the —advance <floar> option, otherwise the piranhad may cycle con-
tinuously between being available and unavailable. The default value is 3.0.

~retreatcheck <seconds>
Number of seconds to wait between checks to retreat. Setting this to a large value could
prevent the piranha from retreating in a timely fashion. The default value is 10 seconds.

~retreattimeout <seconds>
Number of seconds to wait for piranha to retreat. A value of zero means to never timeout,
but continuously signal a retreat until the piranha finally dies. The default is never timeout

(as indicated by a value of 0).

—suffixstring <string>

SCIENTIFIC Last change: June 25, 1995 2
A-6

PIRANHAD(1) USER COMMANDS PIRANHAD(1)

Suffix string to append to executable file names, when needed. The default suffix string
depends on the platform, and is known by piranha programs and piranhad. For SunOS 4.1,
the default value is ".sparc”. For SunOS 5.x, the default value is ".solaris". For hpux, the
default value is ".hp". For RS/6000, the default value is ".rs6k". For AXP/Alpha, the default
value is ".alpha". This option is very useful for running heterogeneous piranha programs. See
the "HETEROGENEOUS EXECUTION" section for more information.

|

‘ ~termtimeout <seconds>
| Number of seconds to wait for piranha to terminate after starting to send the piranha a
| SIGTERM. A value of zero means to never timeout, but continuously try to terminate the
| piranha until it finally dies. A value of -1 (or any negative value) means to skip the terminate
| phase. The default is to skip the terminate phase (as indicated by a value of -1).

"

| —v/+v Synonymous with —verbose/+verbose. Note that there is no "v" resource defined by the
configuration file. The "verbose” resource must be used instead.

-vv/+vv Synonymous with —veryverbose/+veryverbose. Note that there is no "vv" resource defined by
the configuration file. The "veryverbose” resource must be used instead.

~verbose
Turns on verbose mode, which produces informational status messages. This is equivalent to
setting the "verbose" resource to true.

+verbose
This option turns off verbose mode. This is the default. This is equivalent to setting the
"verbose" resource to false.

~veryverbose
Turns on very verbose mode, which produces the maximum amount of informational status
messages. This is equivalent to setting the "veryverbose" resource to true.

+veryverbose
This option turns off very verbose mode. This is the default. This is equivalent to setting the
"veryverbose" resource to false.

CONFIGURATION FILE
A configuration file contains resource specifications used to customize the behavior of piranhad.
Piranhad looks for two different configuration files. They are, in order of precedence:

1) A user configuration file, .piranha.config, located in the user’s home directory.
2) The global configuration file located in the Paradise tree in common/lib/piranha.config.

A default global piranha.config file is supplied with Paradise. It may be customized by a system
administrator to suit your requirements. Resources defined in thé user’s .piranha.config take precedence
over the global piranha.config file.

| Each line in the configuration file, not beginning with the comment "!" character, is called a resource
| definition. In order for piranhad to recognize a resource definition, the definition must use the follow-
ing format:

programspec.nodespec.userspec.resourcespec: value ‘
where:

programspec
is either the class name "Tsnet", or a specific instance of this class, ie. piranhad.

nodespec
is the class "Node", or a specific node name, such as "myhp9000".

userspec is either the class name "User", or a specific user name, such as "frank".

resourcespec
is a variable name recognized by piranhad which can be assigned values.

SCIENTIFIC Last change: June 25, 1995 3
A-7 :

PIRANHAD (1) USER COMMANDS PIRANHAD (1)

value is the value assigned to the resource.

If an incorrect format is used, the resource definition will be ignored by piranhad. Beware of spelling
errors. For example:

! This is correct and will be used
piranhad.Node.User.retreat: 10.0

! This is incorrect and will be silently ignored
piranhad Node.Usr.advance: 8.0

Programspec, nodespec, userspec, and resourcespec are called resource definition components. The first
three have a single class name associated with them that can be used like a wildcard. Class names
begin with an uppercase letter by convention, and instance names begin with a lower case letter.
Currently, there is no class name associated with the resourcespec component.

Class names work as wildcards. By using the class name, you can quickly set resource values for all
members of a class. Using instance names you can set resource values for a specific instance of that
class. Instance names take precedence over class names.

MAP TRANSLATION ‘
Map translation is a way of defining equivalences between local directory trees and directory trees on
remote nodes. It is used by piranhad to determine both the execution directory and working directory.
If you are running piranha programs from within directories that have identical path names on all the
nodes running piranhad, then map translation is not needed. But if the directories are mounted with
different path names, then map translation can be very useful for allowing the piranhad to find piranha
executables and the proper working directories.

Map translation has nothing to do with physically copying program executables between different
machines. It is only used to translate names so they can be correctly located. Quite often, NFS is used
to share the executables between multiple machines, but that doesn’t guarantee indentical path names,
particularly if antomounting is used.

Map translation is controlled by the rules put into both the global common/lib/tsnet.map (relative to the
Paradise installation tree) and the local ~/.tsnet.mapfile. If no translation is available for a given direc-
tory and/or node (whether because its rules haven’t been specified or no map translation file exists), the
rule is simple: look for the same directory on the remote node. For example, if the specific local exe-
cutable directory is /ust/bin/piranha, then the generic directory is /usr/bin/piranha, and the remote exe-
cutable directory used for each piranhad is /ust/bin/piranha.

Map translation file entries use the following commands:
mapto Map a specific local directory to a generic directory.
mapfrom Map a generic directory to a specific directory (usually on a remote node).

map Equivalent to a mapto and a mapfrom, mapping specific directories to and from a generic
directory.

If a local and/or global tsnet.map file exists, piranhad uses mapto rules to transform a local directory
path into a generic directory path, and mapfrom rules to transform the generic directory path into
specific remote directories. As we’ll see later, a mapto does not need a corresponding mapfrom, nor
does a mapfrom need a corresponding mapto. A map is a mapto and mapfrom rolled into one. This -
will be explained in detail below.
mapto generic {

local-node: local-specific-dir;

etc...

}

mapfrom generic {
remote-nodel: remote-specific-dirl;

SCIENTIFIC Last change: June 25, 1995 4
A-8

PIRANHAD (1) USER COMMANDS PIRANHAD (1)

remote-node2: remote-specific-dir2;
etc...

}

map generic {
(remote or local)-node: (remote or local)-specific-dir;
(remote or local)-node2: (remote or local)-specific-dir2;
etc... i

}

The mapto works as follows. The piranha program takes the local node name and the local directory,
and matches it against each "local-node: local-specific-dir" pair in the {} section of a mapto. It looks
for the longest match. For example if the local directory on node moliere was /u/person/programs, and
the tsnet.map contained:

mapto /net/moliere {
moliere : /;

}

mapto /net/moliere/tmp {
moliere : /u/person

}

The match would be "moliere : /u/person”, and the generic directory would become
/net/moliere/tmp/programs. Note that the unmatched portion of the local directory, programs, is
appended to the mapto’s generic directory name. If only the lst mapto was in the tsnet.map file, the
match would have been "moliere : /", and the generic directory would have been
/net/moliere/u/person/programs. If no match is found in the user’s .tsnet.map file, the global tsnet.map
file is searched. If a match is found in the user’s .tsnet.map file, the global tsnet.map is not searched
even if it contains a longer match.

In the example above with 2 mapto’s, and no mapfrom’s, every piranhad will use the directory
/net/moliere/tmp/programs. Since there were no mapfrom’s, the generic directory was null transformed
(without change) to remote specific directories.

Though a mapto may contain a list of "local-node: local-specific-dir" lines; only those where the local-
node is the same as the node from which the piranha program is invoked are used to match the local
directory. It is simpler to understand mapfile translation if you imagine that a mapto only contains lines
that match the local node name. This highlights mapfile translations one to many property. One local
specific directory is transformed to a generic directory which is finally transformed to many specific
remote directories (one for each remote node on which piranhad is executing). But in reality, it is use-
ful to write mapto’s that contain lines with various different local-node names. Especially if your home
directory is mounted on many different nodes, this will make your .tsnet.map file useful when running
piranha programs on all of those different nodes.

If the piranha program does not find any matching mapto "local-node : local-specific-dir" pair in either
the local or global tsnet.map file, no transformation occurs and the generic directory becomes the same
as the local directory. This is called a null transformation.

Next, the piranhad must transform the generic directory back into remote-specific directories for their -
own node. They do this using mapfrom . If the piranhad do not find any matching mapfrom generic
directory, the generic directory is used as the remote specific directory on each remote node. This is
again a null transformation, and is what occurred in the example above. A mapto with no matching
mapfrom generic directory is very common, especially in networks where shared directories are con-
sistently mounted in identical locations on every node.

SCIENTIFIC Last change: June 25, 1995 5
A-9

PIRANHAD(1) USER COMMANDS PIRANHAD (1)

A mapfrom contains a list of "remote-node: remote-specific-dir" pairs. There is often a pair for each
remote node on which there is a piranhad.

With a mapfrom, piranhad matches the generic directory name which is right after the *'mapfrom’ key-
word to the generic directory name it created via a mapto (or to the local directory name itself if there
was no mapto and therefore a null transformation). It then searches the {} portion of the mapfrom
looking for each remote-node that matches the names of the remote node on which it is trying to start a
piranha process. If it finds a match, it uses that specific directory in that "remote-node : remote-
specific-dir" pair as possibly the remote node’s working and/or executable directory. Only if no match
is found in the user’s local .tsnet.map file, does piranhad search for a match in the global tsnet.map
file.

If no matching mapfrom is found, the generic directory path is null transformed and is used as is.

A map is a mapto and mapfrom rolled into one. A map therefore must always contain a "local-node
:local-specific-dir" entry for the node on which piranhad is run. Just like a mapto had to contain an
entry for the local-node. A map also contains "remote-node :remote-specific-dir" pairs just like those in
a mapfrom. Since the generic directory is always translated to a specific remote directory before being
used by piranhad, the generic directory name used in map, mapto and mapfrom need not even be a
real directory. Of course if you use a mapto without a matching mapfrom, or a mapfrom without a
matching mapto, the generic directory name needs to be a real directory. This is due to the null
transformations discussed above. If a null transformation occurred on a generic non-real directory
pame, piranhad would try to use that non-real directory when starting the program, and of course it
would fail because the non-real directory doesn’t exist.

example:

map special {
willow : /root/homes/myhome/test_suite/willow;
oak :/root/homes/myhome/test_suite/oak;
maple : /root/homes/myhome/test_suite/maple;

}

If the local node is willow, and the local directory is /root/homes/myhome/test _suite/willow, the remote
specific directory for a piranhad on oak will be /root/homes/mybome/test_suite/oak, and the remote
specific directory for a piranhad on maple will be /roothomes/myhome/test_suite/maple. This usage is
useful if you want each remote node to use a different working directory so that output files for each
piranha process won’t conflict.

Another useful map example is:

map /tmp {
willow : /root/homes/myhome/test_suite/willow;
oak :/root/homes/myhome/test_suite/oak;
maple : /roothomes/myhome/test_suite/maple;

}

Again if the local node is willow, and the local directory is /root/homes/myhome/test_suite/willow, the
remote specific directory for piranhad on oak and maple is specifically described as above by the con-
tents of the map. If a piranha process is started on any other remote node, its remote specific directory
will be /tmp. Since specific rules didn’t exist in the map for nodes other than oak and maple, a null
transformation is done, and the generic name is used as the remote specific name. This is a case where
you would want the generic directory name in the map to be a meaningful directory name.

The best way to understand the power of mapfile translation is by example:

examplel:

This is a common mapto example when remote nodes automount your node’s directory. On your node,
moliere, you refer to your piranha tests directory as /u/people/mine/piranha_tests. On remote nodes,
you refer to your piranha_tests directory on moliere as /net/moliere/u/people/mine/piranha_tests. In this

SCIENTIFIC Last change: June 25, 1995 6
A-10

PIRANHAD (1) USER COMMANDS PIRANHAD(1)

case, the piranha program needs the following mapto in .tsnet.map.

mapto /net/moliere {
moliere : /;

}

To explain our first example in more detail, lets say that you’re executing a piranha program called
/u/people/mine/piranha_tests/rayshade.net. ~ You’'re on your node moliere and in your
/u/people/mine/piranha_tests directory. When the piranha program starts executing, it must tell the
piranhad where they can find rayshade.net. If it told the remote nodes that rayshade.net was in
/u/people/mine/piranha_tests, they would not be able to find it, because remote nodes mount
moliere:/u/people/mine/piranha_tests as /net/moliere/u/people/mine/piranha_tests. The mapto solves this
problem. The piranha program looks in the {} section of the mapto and sees that there is a line for
moliere. It then sees if the local-specific-dir in that line of the mapto "/" matches the directory where
the local rayshade.net executable resides. It does, so the piranha program uses the generic directory
"/net/moliere" prepended to the unmatched portion of the local directory "u/people/mine/piranha_tests",
to form a generic directory /net/moliere/u/people/mine/piranha_tests. Since there is no mapfrom with a
generic directory that matches /net/moliere/u/people/mine/piranha_tests, the mapfrom is a null transfor-
mation, and /net/moliere/u/people/mine/piranha_tests is used by all of the piranhad.

At this point, it may be wise to note that all piranhad attempt the mapfrom translation, even if it is
running on the same node as the piranha program. In the example above, even a process started on the
local node wil be stated by piranhad using the translated directory
/net/moliere/u/people/mine/piranha_tests. So in this case, even moliere must be able to refer to
/u/people/mine/piranha_tests as /net/moliere/u/people/mine/piranha_tests.

If you wanted to have workers started on your local node moliere use /u/people/mine/piranha_tests
rather than the translated directory, you could use a mapto/mapfrom as follows:

mapto /net/moliere {
moliere : /;

}

mapfrom /net/moliere {
moliere : /;

}

example2:

mapto /net {
moliere: /tmp_mnt/net;

}

This mapto is useful when your local directory is actually on another node that’s automounted by your
node. In this example, when on moliere in /net/chaucer/overflow/tests, pwd actually displays your local
directory name as /tmp_mnt/net/chaucer/overflow/tests. The problem that this mapto solves, is that
Inet/chaucer/overflow/tests is never referred to as /tmp_mnt/net/chaucer/overflow/tests even though
/tmp_mnt is the mount point that the automounter uses. So the /tmp_mnt portion of the directory must
be stripped off. That is just what this mapto accomplishes.

example3:

map /usr/bin/piranha {

moliere : /usr/local/bin/piranha;

chaucer : /usr/tmp;

sappho : /usr/bin/piranha;
}
This map specifies equivalence directories explicitly for the three named nodes in the {} section of the
map, and implicitly for every other node in your network. For example, if the piranha program is
invoked on moliere and the executable is located in /usr/local/bin/piranha, this map will cause the

SCIENTIFIC Last change: June 25, 1995 7
A-11

PIRANHAD (1) USER COMMANDS PIRANHAD (1)

piranhad on chaucer to look for that executable in /usr/tmp; the piranhad on sappho to look for the
executable in /usr/bin/piranha (note that the translation for sappho is redundant since this is the default),
and in /usr/bin/piranha on every other node in your network (a null transformation is performed in the
mapfrom portion of the map for any node that is not explicitly listed in the {} section of the map).

Mapfile Translation Wildcards:
There are two wildcad characters allowed in map translation files entries:
1) An asterisk (*) can be used as a wildcard in local and remote node names.
2) An ampersand (&) can be used to substitute the current node name within a translation.

HETEROGENEOUS EXECTUION

Let’s say a piranha program named "foo.sparc” is executed on a SunOS 4.1 system. During initializa-
tion, the piranha program will notice that the ".sparc” was used. It will tell the piranhad that its pro-
gram name is "foo" with a suffix string appended. A piranhad on an HP will then try to execute a
program named "foo.hp", and an RS/6000 will try to execute a program named "foo.rsék". If the
piranha program on the local machine was called simply "foo", the piranha program will notice that the
suffix string was not used, and will tell the piranhad that its program name is "foo" without a suffix
string. The piranhad will then try to execute a program named "foo", regardless of its architecture.

EXAMPLES

Normally, piranhad will be executed in the background. The main exception is when verbose mes-
sages are desired. Therefore, all the following examples use an ampersand to run piranhad in the
background except the verbose example.

To start piranhad with verbose messages, execute the command:
example% piranhad -v
To start piranhad so that it uses the Paradise server on node "mysparc”:
example% piranhad —host mysparc &
The ~host option is particularly useful when executing piranhad remotely via rsh, for example.
If piranhad should have exclusive use of a node, the following command will turn off retreats:
example% piranhad —enable always &

To run piranhad so that it retreats at or above a load average of 4, starting again at a load average of
2.5, use the following command:

example% piranhad -retreat 4 —advance 2.5 &
To make piranhad respond very quickly to a node becoming busy, use the command:
example% piranhad —retreatcheck 2 &

SEE ALSO
piranha(1), paradise(1), cpc(1), fpe(1)
BUGS
Piranhad only supports one piranha process per node, even if the node is a multiprocessor.
There is no mechanism to cause the default piranha tuple space to be created on a different Paradise
server than the one containing the piranhad tuple spaces.
SCIENTIFIC Last change: June 25, 1995 8

A-12

Chapter 4: Advanced Topics

Using the Piranha Model in Paradise Programs

Piranha Program
Structure

feeder

piranha

This section presents the Piranha model of distributed computing. Piranha was
motivated by the observation that most networked workstations are idle the
majority of the time. These wasted cycles represent a large potential source of
computation, and if they are used carefully, one can do so without impacting the
interactive users of the machines. Piranha was developed to do just that.

At any given time, Piranha declares machines as either idle or busy, depending on
such criteria as load average or keyboard or mouse activity. When machines
become idle, they can join a Piranha computation. When they become busy again,
for example because the owner of the machine begins typing, the machine will
immediately cease work on the Piranha computation. '

Piranha programs often share many characteristics with other Paradise programs.
They use tuples and tuple spaces for communication and synchronization, and
much of the preceding discussion in this manual will apply to them. The programs
most suited to being expressed in Piranha are master/worker algorithms with
minimal data dependency between tasks. However, it is possible to write Piranha
programs that have significant inter-task dependencies. See the LU factorization
case study later in this section for an example of an application with strong
synchronization requirements.

All Piranha programs are required to provide three procedures: feeder, piranha,
and retreat.

The feeder routine generally functions as the master, and is invoked on the local
node when a Piranha program begins execution. It is responsible for generating.
tasks for and collecting results from the worker processes. The process running
feeder is special in that it never retreats; in fact, the Piranha system will
terminate program execution when feeder returns. feeder is passed the
invocation (command line) arguments when it is invoked.

4-18 Paradise User’s Guide & Reference Manual

A-13

retreat

enable_retreat and
disable_retreat

Program
Termination

A Simple Piranha
Program

Using the Piranha Model in Paradise Programs

The piranha routine is executed by the worker processes created by the Piranha
facility. This function is often written as an infinite loop, each iteration of which
processes a single task. This routine will execute until it completes or it is forced
to vacate the node on which it is running. In the latter case, the Piranha system
automatically calls the retreat function and exits.

The retreat routine is what allows a piranha process to discontinue executing
without affecting overall program integrity or results. At a minimum, it is
responsible for returning any unfinished (or partially finished) tasks to tuple
space, to be retrieved by some other piranha process. More complex versions
also provide needed data and state information for partially finished tasks, which
will allow a different piranha process to take them up at the point where they left
off, rather than having to restart them from the beginning.

The Piranha system also provides two additional functions: enable_retreat and
disable_retreat. These routines allow critical sections of the program to be
protected against retreats. Retreats must be disabled whenever Paradise

operations are executed.

enable_retreat indicates the beginning of a program section where retreats are
allowed. Until the first invocation of this operation, retreats are disabled within a

Piranha program.

disable_retreat prevents retreats, marking the end of the program section begun
with the enable_retreat operation. Looked at another way, disable_retreat
marks the beginning of a protected region of the program, during which retreats

are not allowed.

A Piranha program terminates when feeder returns or exits. When this happens,
all running piranha, processes will be terminated automatically.

The following C program will demonstrate all of the Piranha constructs. It can be
used as a template to create your own Piranha programs:

#include <paradise.h>
TASK *task, *get_taskQ;
RESULT fO;

int index;
extern TSHANDLE pir_ts; /* tuple space provided by Piranha */

feeder(arge, argv)
int arge;
char **argv;
{
RESULT result;
int count, process_resultQ;

Paradise User's Guide & Reference Manual 4-19

Chapter 4: Advanced Topics

/* create task tuples in the pir_ts tuple space */
for (count=0; task=get_task(count); ++count)
out @ pir_ts("task", count, *task);
/* retrieve results from the pir_ts tuple space */
while (count--) {
in @ pir_ts("result", ?index, ?result);
process_result(index, result);

piranha(Q

{
RESULT result;

while(1) {
in @ pir_ts("task", ?index, ?*task);
enable_retreatQ;
result = f(task); /* f performs the actual computation */
disable_retreatQ;
out @ pir_ts("result", index, result);

retreatQ

{
/* return unfinished task to the pir_ts tuple space */

out @ pir_ts("task", index, *task);
}

get_task returns a pointer to a task structure, or NULL if there are no more tasks.
f is the function that we want to invoke in parallel; it performs the real work of the
program. Notice that both index and task are global variables. This is necessary
in order to make them accessible to the retreat function.

These routines all use the “pir_ts” tuple space, which is provided automatically by
the Piranha facility. In order to use this tuple space, all that is necessary is to
include paradise.h and to declare it as an extern TSHANDLE. If the program
wanted to access any other tuple space, it would have to create one or retrieve and
open a tuple space handle in the normal manner.

Building Paradise The preceding program could be compiled and linked with a command like the
Piranha Programs ~ following:

4-20

$ cpc -paradise piranha -o fish fish.cl

The option to ¢pc¢ indicates that this Paradise program uses the Piranha facility.

Paradise User’'s Guide & Reference Manual
A-15

percolate: A
Monte Carlo
Simulation

Using the Piranha Model in Paradise Programs

The following C program is a more advanced example of Piranha functionality. It
is a Monte Carlo simulation named percolate. Here is a simplified version of its
feeder function. The program begins by processing its arguments, setting some
global parameters, and placing them into tuple space:

#include <paradise.h>
extern TSHANDLE pir_ts;

feeder(arge,argv)

int arge;

char **argv,

{
/* set up global parameters & put into tuple space */
set_params(arge, argv, ¶ms);
out @ pir_ts("params", params, X_STEP);

feeder’s main for loop creates tasks and gathers results, each within their own for
loop:

/* loop over series */
for (x=params.gmax_x; X <= MAX X; X += X_STEP) {
tasks_out = O; /* reset for each series */

/* create tasks, being careful not to flood TS */
for (tasks_out=0; tasks_out < WATERMARK &&
tasks_out < NUM_TRIALS; tasks_out++)
out @ pir_ts("task", X, tasks_out+MIN_SEED);

/* gather results; put out more tasks if approp. */
for (i=0; i < NUM_TRIALS; i++) {
in @ pir_ts("result", x, ?result); .
data_out(&result, &list, NUM_TRIALS);
if (tasks_out < NUM_TRIALS) {
out @ pir_ts("task", X, tasks_out+MIN_SEED);
tasks_out++;
}
}

out @ pir_ts("task", x, NEXT_X); /* go on to next series */

}
} /* end of feeder */

The program performs the simulation MAX X times; each iteration of the
outermost loop corresponds to one series of trials, with a distinet value for the
variable x. Within each series, this feeder routine creates NUM_TRIALS tasks.
The second for loop creates up to WATERMARK tasks; if WATERMARK is less
than NUM_TRIALS, the remaining tasks are created in the second for loop as the
“result” tuples are gathered. This watermarking technique is used to avoid filling

Paradise User's Guide & Reference Manual 4-21

Chapter 4: Advanced Topics

up tuple space with the large number of task tuples required by this program. The
reason we out tasks_out+MIN_SEED in addition to X is to give each task a
unique, non-trivial seed for the random number generator.

Once all of the results for the given series of trials are retrieved, the program
places a “task” tuple into tuple space with the special value NEXT_X as its third
argument. This will tell the piranha, (worker) processes that a new series is
beginning,.

The piranha routine for this program begins by reading in the global parameters
and assigning an initial value to the variable x:

void piranhaQ

{
rd @ pir_ts("params", ?params, ?x_step);
X = params.gmax_X;

Next, piranha enters an infinite while loop, and retrieves the next task from tuple
space:

while (1) {
in @ pir_ts("task", x, ?seed);

/* new series */

if (seed == NEXT_X) { _
/* put task back for others to use */
out @ pir_ts("task", x, seed);
/* increment gmax_x and reassign x */
params.gmax_X += X_step;
X = params.gmax_X;
}

else {
enable_retreat(); /* allow retreats */
percolate(seed, ¶ms, &result);
disable_retreat(); /* no retreats anymore */
out @ pir_ts("result", x, result);
} /* end if-then-else */

} /* end while */

} /* end piranha */

The first section of the if-then-else construct handles the special case task for a
new series; the second section performs the actual computation. The real work is-
done by the routine percolate, which essentially corresponds to the original
sequential program (minus argument handling and global parameter setting).
While percolate is running, retreats are enabled, and the Piranha system can
shut down the piranha process. At all other times, retreats are disabled.

4-22 Paradise User’'s Guide & Reference Manual

A-17

Driving a External
Program with
Piranha

Using the Piranha Model in Paradise Programs

Here is the retreat function for this program:

retreatO
{

out @ pir_ts("task", x, seed);
}

This simple function simply places the current task back into tuple space, where
some other piranha, process will retrieve it and perform it in its entirety. Note
that the variables x and seed must be globals.

The next example illustrates the use of a Paradise Piranha program to initiate and
control multiple instances of an existing simulation program (whose command
invocation string is stored in the array task_string). Here are the global
declarations and the feeder routine for this program:

#include <stdio.h>
#include <paradise.h>
extern TSHANDLE pir_ts;

TSHANDLE pts;
int task_active, task_num;
char task_string[25];

/* feeder simply registers the piranha TS handle,
* and then waits for a shutdown request. */
feeder(

{
register_handle("Piranha TS", " Simula2", "Piranha", &pir_ts);

in @ pir_ts("SHUTDOWN");
deregister_handle("Compute TS", " Simula2", "Piranha");
return;

}

This routine registers the handle for the Piranha tuple space, and then it waits for
a “SHUTDOWN” tuple to appear in that tuple space, whereupon it deregisters the

handle and exits.

Paradise User’'s Guide & Reference Manual 4-23

Chapter 4: Advanced Topics

Here is the piranha routine:

/* piranha executes one task, structured as a transaction;
* if it retreats, the transaction is cancelled. */
void piranha()
{
FILE *fp;

while (1) {
task_active = O;

xaction @ pir_ts(PARADISE_TIMEOUT(600));
task_active = inp @ pir_ts("sim® task", ?task_num,
?task_string:);
if (task_active) { /* We found a task, so do it. */
/* Create the task tuple that will be used by the actual

* application code; a separate handle to the "pir_ts" TS
must be created and used to distinguish it from the one
* used in the xaction operation. */

pts = restrict @ pir_ts(PERM_ALL);
open @ ptsQ;
out @ pts("task", task_num);

enable_retreatQ;
/* Run the simulation program via the system function. */
if (status = system(task_string)) {
perror("command failed"); /* command failed */
additional print statements
}
disable_retreat(;

task_active = O;

out @ pir_ts("task done", task_number);
close @ ptsQ;

commit @ pir_tsQO;

} /* end if(task_active) */

else { /* There was no task, so just end the transaction. */
commit @ pir_tsQ;
enable_retreatQ;
sleep(10); /* Wait before getting next task. */
disable_retreatQ;
} /* end else */
} /* end while */

return;
} /* end piranha */

4-24 Paradise User's Guide & Reference Manual
A-19

Using the Piranha Model in Paradise Programs

The heart of the routine’s while loop is structured as a transaction, including the
inp operation which attempts to retrieve a task to complete; the task tuple will not
be permanently removed from the tuple space until the transaction is committed,
so it will still be available for another piranha process if one that begins it is forced

to retreat.

When a task is succesfully retrieved, the function copies the tuple space handle
for the Piranha tuple space and opens it (this is done so as to not conflict with the
handle used in the transaction). It creates another tuple, the “task” tuple, for use
by the actual simulation program, and then runs it via the system system call. It
creates a “task done” tuple and commits the transaction after the program
completes (regardless of its outcome). Note that retreats are allowed only while

the external program is running.

When it cannot find a task tuple, it commits the current transaction, waits 10
seconds, and then tries again via the next iteration of the while loop.

Here is the retreat function:

void retreatQ

{
if (task_active) {
inp @ pts("task", task_number); /* Remove generated tuple. */
close @ ptsQ;

}

cancel @ pir_tsQ;
return;
}

If task_active is true, indicating that a task was retrieved, then the routine
removes the “task” tuple from the Piranha tuple space (if present) and closes the
(second) tuple space handle. It then cancels the pending transaction.

The actual computation code is a Fortran program. Here is the main routine,
which is what gets initiated by the piranha routine’s system call:

Program Real_Comp

c
¢ This is the program executed by piranha. It gets some basic (common

¢ block type) data and a task number. It then calls the real compute
¢ program (which is basically identical to the sequential version).
c

TSHANDLE pts

integer task_num, fwaitfor_handle

common /dbldat/ a, b, ¢

common /intdat/ i, j, k

Paradise User's Guide & Reference Manual 4-25

A-20

:

Chapter 4: Advanced Topics

¢ Obtain and open the Piranha tuple space.
igstat = fwaitfor_handle('Piranha TS', 'Simulald’', pts)
open @ ptsQ

¢ Read paramaters from tuple space and save into common blocks.
rd @ pts ('dbldat',?/dbldat/)
rd @ pts ('intdat',?/intdat/)

Grab a task and perform the computation. task_num is the task
identifier for the main computation routine, identifying its associated
data file.

in @ pts('task’', Ytask_num)

Call main_comp(task_num)

QOO0 00

close @ ptsO
end

main_comp is essentially the original sequential program.

All that remains is the driver subroutine which is called from the front-end to the
original program, which translates a user’s request into a Paradise task:

Subroutine pinvoke(strw, ntasks)
c
¢ Called from main computation controller (the user GUD
¢ with the basic UNIX command line to be executed for each task.
c
integer fwaitfor_handle
character*80 strw
TSHANDLE pts
common /dbldat/ a, b, ¢
common /intdat/ i, j, k
c
¢ Get tuple space handle and out global common blocks.
istat = fwaitfor_handle('Piranha TS', 'Simula®', pts)
open @ ptsO
out @ pts (‘dbldat', /dbldat/)
out @ pts ('intdat', /intdat/)
c
¢ Create task tuples for the Paradise program.
do n = 1, ntasks
out @ pts('task invocation string', n, strw:)
enddo
c
¢ Retrieve tuples indicating completed runs.
do n = 1, ntasks
in @ pts('task done', ?m)
enddo

4-26 Paradise User’s Guide & Reference Manual

A-21

The Piranha
Configuration File

Using the Piranha Model in Paradise Programs

¢ Shut down Paradise program and exit.
out @ pts('SHUTDOWN")
close @ ptsO
return
end

This routine can be called as necessary by the graphical interface to the
simulation program. It places some global dat into the Piranha tuple space, and
then generates task tuples for the C Paradise program. It then retrieves “task
done” tuples as they appear, and ends by placing the “SHUTDOWN?” tuple into the
Piranha tuple space, which tells the Paradise program to exit as well.

The Piranha system has its own system-wide configuration file, piranha.config,
located in /ete or in the common/lib subdirectory of the Paradise tree. The /ete
location takes precedence; if a configuration file exists in /ete, a file existing in
common/1lib will not be used. A user-specific configuration file .piranha.config
may also be used, located in the user’s home directory, and the two files are
logically merged at runtime (precedence is given to the user-specific file in the
case of conflicts).

These configuration files specify the conditions under which execution can
proceed on the various available nodes.

The entries in the Piranha configuration file are of the form:
piranha.nodespec. userspec.resourcespec: value

where nodespec is the class Node or the name of an individual node, userspec is
either the class User or a specific username (on the local node), and resourcespec
is the name of a resource (available resources are discussed individually below),

which is to be assigned the specified value.

The enabled resource determines whether Piranha may runon a node at all. The
resource may be set to always, check, or never. The default value is check.

When it is allowed to run on a node, the Piranha system looks at system load
average and device idle times when deciding whether or not to start a piranha
process on a node; the same considerations determine when a process needs to
retreat. The idle resource specifies how long user devices (such as the keyboard)
must be idle before the Piranha system can use that node (in seconds, with a

default value of 300).

The retreat resource specifies how high the load average on the system may go
before a running piranha must retreat. Its value is a floating point number and
defaults to 3.0. The loadperiod resource specifies the number of minutes over
which the load average is computed (the default value is 5). The retreatcheck
resource specifies how often a piranha should check if it should retreat while it

is running (in seconds); the default value is 10.

Paradise User’s Guide & Reference Manual 4-27

A-22

S

Chapter 4: Advanced Topics

Once a Piranha process has retreated, it may still become active again provided
that system load decreases sufficiently. The condition specified by the idle
resource must be fulfilled, as well as that imposed by the advance resource. The
latter specifies how low the load average must drop before the piranha may
advance (resume execution). It is designed to prevent the piranha’s retreat from
reducing the load average sufficiently to allow it to immediately restart. The
default value is 1.9. The advancecheck resource specifies how often a suspended
Piranha process should check if conditions allow it to advance or not (in seconds);
the defauit value is 10.

See chapter 7 for a complete list of Piranha configuration file resources.
Here are some sample Piranha configuration file entries:

piranha*moliere*chavez*idle: 600
piranha*moliere*chavez*retreat: 4.0
piranha*moliere*chavez*advance: 2.5
piranha*moleire*chavez*retreatcheck: 5
piranha*moliere*User*retreat: 2.5

The first four lines apply only to user chavez on the node moliere. They set the
idle time required before a piranha executes to 10 minutes. A Piranha process
must retreat when the load average rises above 4.0, and it cannot advance until it
falls below 2.5. A running process must check conditions every 5 seconds. The
final line applies to all other users on moliere, and it indicates that a Piranha
process must retreat whenever the load average rises above 2.5.

4-28 Paradise User's Guide & Reference Manual

A-23

